

 RANDOM NUMBER GENERATION

Uniform Random Number Generators

• Want sequence of independent, identically distributed uniform
(U(0,1)) random variables

– U(0,1) random numbers of direct interest in some applications

– More commonly, U(0,1) numbers transformed to random numbers
having other distributions (e.g., in Monte Carlo simulation)

• Computer-based random number generators (RNGs) produce
deterministic and periodic sequence of numbers

– Pseudo random numbers

• Want pseudo random numbers that “look” random

– Should be able to pass all relevant statistical tests for randomness

D-2

Overall Framework for Generating Random
Numbers

• State at step k given transition function fk:

• Output function, g, produces pseudo random numbers as

• Output sequence of RNG is {Jk, k  1}

• Period of an RNG is number of iterations before RNG
output (Uk) repeats itself

D-3

   1 2(, ,...,), 1k k k k k rJ f J J J r

 k kU g J

Criteria for Good Random Number Generators
• Long period
• Strong theoretical foundation
• Able to pass empirical statistical tests for independence and

distribution (next slide)
• Speed/efficiency
• Portability: can be implemented easily using different languages and

computers
• Repeatability: should be able to generate same sequence from same

seed
• Be cryptographically strong to external observer: unable to predict next

value from past values
• Good distribution of points throughout domain (low discrepancy) (also

related to quasi-random sequences, not covered here)

D-4

Criteria for Good Random Number
Generators (cont’d): Statistical Tests

• Ideal aim is that no statistical test can distinguish RNG output from
i.i.d. U(0,1) sequence
– Not possible in practice due to limits of testing and limits of finite-period

generators

• More realistic goal is passing only key (relevant) tests
• Null hypothesis: sequence of random numbers is realization of i.i.d.

U(0,1) stochastic process
– Almost limitless number of possible tests of this hypothesis

• Failing to reject null hypothesis improves confidence in generator but
does not guarantee random numbers will be appropriate for all
applications

• Bad RNGs fail simple tests; good RNGs fail only complicated and/or
obscure tests

D-5

Types of Random Number Generators

• Linear: commonly used

• Combined: can increase period and improve statistical
properties

• Nonlinear: structure is less regular than linear generators
but more difficult to implement and analyze

• Physical processes (e.g., timing in atomic decay, internal
system noise, etc.)

– Not as widely used as computer-based generators due to
costliness of implementation, lack of speed, and inability to
reproduce same sequence

D-6

Linear Congruential Generators

• Linear congruential generators (LCG) produce U(0,1) numbers via

 where a, c, and m are user-specified constants

• LCG appears to be most widely used and studied random number generator

• Values a, c, and m should be carefully chosen:

 (LCG output may be modified to avoid 0 values for Uk)

D-7

  



1 mod

,

k k

k
k

J aJ c m

J
U

m

 

   

   0

0 , 0

0 , 0,1, , 1k

a m c m

J m J m

Linear Congruential Generators

• Some famous values for a and m (assuming c = 0)

– a = 23, m = 108 + 1 (first LCG; original 1951 implementation)

– a = 65539, m = 231 –1 (RANDU generator of 1960s; poor
because of correlated output)

– a = 16807, m = 231
–1 (has been discussed as minimum

standard for RNGs; used in Matlab version 4)

Lehmer, D. H. (1951), “Mathematical Methods in Large-Scale

Computing Units,” Annals of the Computation Laboratory of Harvard
University, no. 26, pp. 141–146.

D-8

D-9

0 500 1000 1500 2000
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58
S

a
m

p
le

 M
e
a
n

Number of Samples

m = 9, a = 4, c = 1

m = 27, a = 26, c = 5

m = 482, a = 13, c = 14

m = 231 – 1, a = 4, c = 1

Example of “Minimal” Statistical Test for LCG:
Is Sample Mean Close to 0.5?

Fibonacci Generators

• These are generators where current value is
sum (or difference, or XOR) of two preceding
elements

• Lagged Fibonacci generators use two numbers
earlier in sequence

D-10

  



mod

, are the lags

()k k p k r

k
k

J J J m

J
U

m

p q

Multiple Recursive Generators

• Multiple recursive generators (MRGs) are defined by

 where the ai belong to {0,1,…,m – 1}
• Maximal period is m

r – 1 for prime m and properly chosen
ai

• For r = 1, MRG reduces to LCG

D-11

    



1 1 mod

,

k k k k r

k
k

J a J a J m

J
U

m

Nonlinear Generators
• Nonlinearity sometimes used to enhance performance of RNGs

– Nonlinearity may appear in transition function fn and/or in output
function g (see earlier slide “Overall Framework for Generating
Random Numbers”)

– Have some advantage in reducing lattice structure (Exercise D.2) and in
reducing discrepancy

• Two examples (L’Ecuyer, 1998)
– Nonlinear f = fk via quadratic recursion:

– Nonlinear fk via inversive generator:

D-12

 


 



2
mod

m

k

k k

J ak c m

U J M

   



2
1 1 mod()k k k

k k

J aJ bJ c m

U J M

Combining Generators

• Used to increase period length and improve statistical
properties

• Shuffling: uses second generator to choose random order
for numbers produced by final generator

• Bit mixing: combines numbers in two sequences using
some logical or arithmetic operation (addition and
subtraction are preferred)

D-13

Random Number Generators Used in
Common Software Packages

• Important to understand types of generators used in statistical
software packages and their limitations

• MATLAB:
– Versions earlier than 5: LCG with a = 75 = 16807, c = 0, m = 231–
1

– Versions 5 to 7.3: lagged Fibonacci generator combined with
shift register random integer generator with period 21492

(“ziggurat algorithm”)

– Versions 7.4 and later: “Mersenne twister” (sophisticated linear
algorithm with huge period 219937)

• EXCEL: Uk = fractional part (9821Uk –1 + 0.211327); period 223
• SAS (vers. 6): LCG with period 231–1

D-14

Inverse-Transform Method for Generating Non-
U(0,1) Random Numbers

• Let F(x) be distribution function of X

• Define inverse function of F by

• Generate X by

• Example: exponential distribution

D-15

     F y x F x y y1() inf : () ,0 1.

X F U1()

1

() 1

1
() log(1)

xF x e

X F U U





 

   


AcceptReject Method
• Let pX(x) be density function of X

• Find function (x) that majorizes pX(x)
– Have (x) = Cq(x), C  1, q is density function that is “easy” to generate

outcomes from

• Acceptreject method generates X by following steps:

 Generate U from U(0,1) (*)
 Generate Y from q(y), independent of U

 If then set X = Y. Otherwise, go back to (*)

• Probability of acceptance (efficiency) = 1/C
• Related to Markov chain Monte Carlo (MCMC) (see Exercise 16.4 of

ISSO)
• Example to follow next two slides (pX(x) = beta density)….

D-16




()
,

()
Xp Y

U
Y

D-17

   
 


3 260 (1) if 0 1
()

0 otherwise
X

x x x
p x






Y q y U

Y Y
U

3 2

~ () (0,1)

60 (1)

2.0736

pX(x)

q(x) = U(0,1)

   () () 2.0736 (0,1)x Cq x U

0 0.2 0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

2.0

2.5

Note: This

example

adapted from

Law (2007,

p.438)

D-18

U ~ U(0,1): 0.9501, 0.2311, 0.6068, 0.4860, 0.8913, 

Y ~ q(y)  U(0,1): 0.7621, 0.4565, 0.0185, 0.8214, 0.4447, 

()
:

()
Xp Y

Cq Y
0.7249, 0.8131, 0.00018,

X ~ pX(x): 0.7621, 0.4565, 0.0185,

reject accept reject

Accept/reject: Is U value  above ratio?

Accepted values represent realization of random

numbers from pX(x)

References for Further Study

• Law, A. M. (2007), Simulation Modeling and Analysis (4th ed.), McGraw-Hill,
New York, Chap. 8.

• L’Ecuyer, P. (1998), “Random Number Generation,” in Handbook of
Simulation: Principles, Methodology, Advances, Applications, and Practice
(J. Banks, ed.), Wiley, New York, Chap. 4.

• L'Ecuyer, P. (2004), “Random Number Generation,” in Handbook of
Computational Statistics (J. E. Gentle, W. Härdle, and Y. Mori, eds.),
Springer, Chap. II.2 (pp. 3570).

• Moler, C. (2004), Numerical Computing with MATLAB (Chap. 9: Random
Numbers), SIAM, Philadelphia (online at
www.mathworks.com/moler/chapters.html).

• Neiderreiter, H. (1992), Random Number Generation and Quasi-Monte
Carlo Methods, SIAM, Philadelphia.

D-19

