RANDOM NUMBER GENERATION

Uniform Random Number Generators

Want sequence of independent, identically distributed uniform
(U(0, 1)) random variables

— U(0, 1) random numbers of direct interest in some applications

— More commonly, U(0, 1) numbers transformed to random numbers
having other distributions (e.g., in Monte Carlo simulation)

Computer-based random number generators (RNGs) produce
deterministic and periodic sequence of numbers

— Pseudo random numbers
Want pseudo random numbers that “look” random
— Should be able to pass all relevant statistical tests for randomness

D-2

Overall Framework for Generating Random
Numbers

State at step k given transition function f:

Output functigh,:gfkrggdsd]ﬂ‘gés%'s'éL‘}Hﬂ ?’é%golm numbers as

Output sequence of RN is @IQ,J{S)Z 1}

Period of an RNG is number of iterations before RNG
output (U,) repeats itself

D-3

Criteria for Good Random Number Generators

Long period
Strong theoretical foundation

Able to pass empirical statistical tests for independence and
distribution (next slide)

Speed/efficiency

Portability: can be implemented easily using different languages and
computers

Repeatability: should be able to generate same sequence from same
seed

Be cryptographically strong to external observer: unable to predict next
value from past values

Good distribution of points throughout domain (low discrepancy) (also
related to quasi-random sequences, not covered here)

Criteria for Good Random Number
Generators (cont’d): Statistical Tests

Ideal aim is that no statistical test can distinguish RNG output from

i.i.d. U(0, 1) sequence

— Not possible in practice due to limits of testing and limits of finite-period
generators

More realistic goal is passing only key (relevant) tests

Null hypothesis: sequence of random numbers is realization of i.i.d.
U(0, 1) stochastic process

— Almost limitless number of possible tests of this hypothesis

Failing to reject null hypothesis improves confidence in generator but
does not guarantee random numbers will be appropriate for all
applications

Bad RNGs fail simple tests; good RNGs fail only complicated and/or
obscure tests

D-5

Types of Random Number Generators

Linear: commonly used

Combined: can increase period and improve statistical
properties

Nonlinear: structure is less regular than linear generators
but more difficult to implement and analyze

Physical processes (e.g., timing in atomic decay, internal
system noise, etc.)

— Not as widely used as computer-based generators due to
costliness of implementation, lack of speed, and inability to
reproduce same sequence

D-6

Linear Congruential Generators

Linear congruential generators (LCG) produce U(0, 1) numbers via

J. =(aJ,_;+c)mod m

Jk .
where a, ¢, and m arélp(serjnpemfled constants
LCG appears to be most widely used and studied random number generator
Values a, ¢, and m should be carefully chosen:

(LCG output may be modified to avoid 0 values for U,)
O<a<m,0<c<m

0<Jy<mJ, €{01...m-1

D-7

Linear Congruential Generators

e Some famous values for a and m (assuming c = 0)
— a=23,m=10%+1 (first LCG; original 1951 implementation®)
— a=65539, m=231-1 (RANDU generator of 1960s; poor
because of correlated output)

— a=16807, m =231 -1 (has been discussed as minimum
standard for RNGs; used in Matlab version 4)

*Lehmer, D. H. (1951), “Mathematical Methods in Large-Scale
Computing Units,” Annals of the Computation Laboratory of Harvard
University, no. 26, pp. 141-146.

D-8

Example of “Minimal” Statistical Test for LCG:
Is Sample Mean Close to 0.5?

0.58
0.56
|
0.54
-
8 0.52 | m=2%-1a=4c=1
= /
@ o5l P T e T TS
g —m=482,a=13,c=14
S 048 S
0 27,a=26,c=5
0.461
0.44 i N B—
| m=9,a=4,c=1
0.42 i
0 500 1000 1500 2000

Number of Samples
D-9

Fibonacci Generators

* These are generators where current value is

sum (or difference, or XOR) of two preceding
elements

» Lagged Fibonacci generators use two numbers

earlier in sequence
J

U, =k

k m

P, d are the lags

D-10

Multiple Recursive Generators

 Multiple recursive generators (MRGs) are defined by
\Jk — (ale_l + e+ aka_r) mOd M

where the a; belong to {0,1,...,m — 1}

Maximal period is m"— 1 for prime m and properly chosen

a;

e Forr=1, MRG reduces to LCG

D-11

Nonlinear Generators

* Nonlinearity sometimes used to enhance performance of RNGs

— Nonlinearity may appear in transition function f, and/or in output
function g (see earlier slide “Overall Framework for Generating
Random Numbers”)

— Have some advantage in reducing lattice structure (Exercise D.2) and in
reducing discrepancy

 Two examples (L'Ecuyer, 1998)
— Nonlinear f = f, via quadratic recursion:

— Nonlinear f, via inversivezgenerator:

J, =(ak+¢c)™* modm

U, =J,/M
< =J/ D-12

Combining Generators

Used to increase period length and improve statistical
properties

Shuffling: uses second generator to choose random order
for numbers produced by final generator

Bit mixing: combines numbers in two sequences using
some logical or arithmetic operation (addition and
subtraction are preferred)

D-13

Random Number Generators Used in

Common Software Packages

Important to understand types of generators used in statistical
software packages and their limitations
MATLAB:

— Versions earlier than 5: LCG with a = 75 = 16807, c=0, m = 231 -
1

— Versions 5 to 7.3: lagged Fibonacci generator combined with
shift register random integer generator with period ~21492
(“ziggurat algorithm”)

— Versions 7.4 and later: “Mersenne twister” (sophisticated linear
algorithm with huge period ~219937)

EXCEL: U, = fractional part (9821U, _, + 0.211327); period ~2%3
SAS (vers. 6): LCG with period 231 -1

D-14

Inverse-Transform Method for Generating Non-
U(0,1) Random Numbers

Let F(x) be distribution function of X
Define inverse function of F by

F(y)=inf{x:F(x)>y},0<y<1.

Generate X b
AR x)

Example: exponential distribution
F(x)=1-e™

X =F}U)= —%Iog(l—U)
D-15

Accept—Reject Method

Let p,(x) be density function of X

Find function ¢(x) that majorizes p,(x)

— Have ¢(x) = Cq(x), C > 1, g is density function that is “easy” to generate
outcomes from

Accept—reject method generates X by following steps:

Generate U from U(0,1) (%)
Generate Y from g(y), independent of U

If then set X = Y. Otherwise, go back to (*)

Proba 'Iiyl@ﬁ&(c)eptance (efficiency) = 1/C
Relat)e to I\(I;W(y\/ chain Monte Carlo (MCMC) (see Exercise 16.4 of
ISSO)

Example to follow next two slides (p,(x) = beta density)....

D-16

Y ~q(y)=U(0,1)

o (x) = 60x°(1-x)* ifO0<x<1 ; ;
X 0 otherwise U< 60Y~(1-Y)
2.0736
2.5
¢(x)=Cq(x)=2.0736-U(0,1)

2.0+

1.5t pX(X)

Lol A0 = U(0/1)
Note: This
example

0.5 7 adapted from
Law (2007,
p.438)

D-17

U~ U(0,1): 0.9501, 0.2311, 0.6068, 0.4860, 0.8913, -

Y ~q(y) = U(0,1): 0.7621, 0.4565, 0.0185, 0.8214, 0.4447, ---

Px(Y).
:0.7249, 0.8131, 0.00018,---
Cq(Y)

Accept/reject: Is U value < above ratio?

X ~ px(x): (y6{1 0.4565, 0,0185,---

reject accept reject

Accepted values represent realization of random
numbers from py(x)

D-18

References for Further Study

Law, A. M. (2007), Simulation Modeling and Analysis (4th ed.), McGraw-Hill,
New York, Chap. 8.

'Ecuyer, P. (1998), “Random Number Generation,” in Handbook of
Simulation: Principles, Methodology, Advances, Applications, and Practice
(J. Banks, ed.), Wiley, New York, Chap. 4.

L'Ecuyer, P. (2004), “Random Number Generation,” in Handbook of
Computational Statistics (J. E. Gentle, W. Hardle, and Y. Mori, eds.),
Springer, Chap. 1.2 (pp. 35—70).

Moler, C. (2004), Numerical Computing with MATLAB (Chap. 9: Random
Numbers), SIAM, Philadelphia (online at
www.mathworks.com/moler/chapters.html).

Neiderreiter, H. (1992), Random Number Generation and Quasi-Monte
Carlo Methods, SIAM, Philadelphia.

D-19

