Random Number Generation

Uniform Random Number Generators

- Want sequence of independent, identically distributed uniform $(U(0,1))$ random variables
- $U(0,1)$ random numbers of direct interest in some applications
- More commonly, $U(0,1)$ numbers transformed to random numbers having other distributions (e.g., in Monte Carlo simulation)
- Computer-based random number generators (RNGs) produce deterministic and periodic sequence of numbers
- Pseudo random numbers
- Want pseudo random numbers that "look" random
- Should be able to pass all relevant statistical tests for randomness

Overall Framework for Generating Random Numbers

- State at step k given transition function f_{k} :

- Output sequence of $R \mathcal{N G}_{k}$ is $\left.\oint\left(k \int_{k}^{k}\right) \geq 1\right\}$
- Period of an RNG is number of iterations before RNG output $\left(U_{k}\right)$ repeats itself

Criteria for Good Random Number Generators

- Long period
- Strong theoretical foundation
- Able to pass empirical statistical tests for independence and distribution (next slide)
- Speed/efficiency
- Portability: can be implemented easily using different languages and computers
- Repeatability: should be able to generate same sequence from same seed
- Be cryptographically strong to external observer: unable to predict next value from past values
- Good distribution of points throughout domain (low discrepancy) (also related to quasi-random sequences, not covered here)

Criteria for Good Random Number Generators (cont'd): Statistical Tests

- Ideal aim is that no statistical test can distinguish RNG output from i.i.d. $U(0,1)$ sequence
- Not possible in practice due to limits of testing and limits of finite-period generators
- More realistic goal is passing only key (relevant) tests
- Null hypothesis: sequence of random numbers is realization of i.i.d. $U(0,1)$ stochastic process
- Almost limitless number of possible tests of this hypothesis
- Failing to reject null hypothesis improves confidence in generator but does not guarantee random numbers will be appropriate for all applications
- Bad RNGs fail simple tests; good RNGs fail only complicated and/or obscure tests

Types of Random Number Generators

- Linear: commonly used
- Combined: can increase period and improve statistical properties
- Nonlinear: structure is less regular than linear generators but more difficult to implement and analyze
- Physical processes (e.g., timing in atomic decay, internal system noise, etc.)
- Not as widely used as computer-based generators due to costliness of implementation, lack of speed, and inability to reproduce same sequence

Linear Congruential Generators

- Linear congruential generators (LCG) produce $U(0,1)$ numbers via

$$
J_{k}=\left(a J_{k-1}+c\right) \bmod m
$$

where a, c, and m arellssef-spe,cified constants

- LCG appears to be most widely used and studied random number generator
- Values a, c, and m should be carefully chosen:
(LCG output may be modified to avoid 0 values for U_{k})

$$
\begin{aligned}
& 0<a<m, 0 \leq c<m \\
& 0<J_{0}<m, J_{k} \in\{0,1, \ldots, m-1\}
\end{aligned}
$$

Linear Congruential Generators

- Some famous values for a and m (assuming $c=0$)
$-a=23, m=10^{8}+1$ (first LCG; original 1951 implementation*)
$-a=65539, m=2^{31}-1$ (RANDU generator of 1960s; poor because of correlated output)
$-a=16807, m=2^{31}-1$ (has been discussed as minimum standard for RNGs; used in Matlab version 4)
*Lehmer, D. H. (1951), "Mathematical Methods in Large-Scale Computing Units," Annals of the Computation Laboratory of Harvard University, no. 26, pp. 141-146.

Example of "Minimal" Statistical Test for LCG: Is Sample Mean Close to 0.5 ?

Fibonacci Generators

- These are generators where current value is sum (or difference, or XOR) of two preceding elements
- Lagged Fibonacci generators use two numbers earlier in seguence $=\left(y_{k-p}+J_{k-r}\right) \bmod m$
$U_{k}=\frac{J_{k}}{m}$
p, q are the lags

Multiple Recursive Generators

- Multiple recursive generators (MRGs) are defined by

$$
\begin{aligned}
& J_{k}=\left(a_{1} J_{k-1}+\cdots+a_{k} J_{k-r}\right) \bmod m \\
& U_{k}=\frac{J_{k}}{m},
\end{aligned}
$$

where the a_{i} belong to $\{0,1, \ldots, m-1\}$

- Maximal period is $m^{r}-1$ for prime m and properly chosen a_{i}
- For $r=1$, MRG reduces to LCG

Nonlinear Generators

- Nonlinearity sometimes used to enhance performance of RNGs
- Nonlinearity may appear in transition function f_{n} and/or in output function g (see earlier slide "Overall Framework for Generating Random Numbers")
- Have some advantage in reducing lattice structure (Exercise D.2) and in reducing discrepancy
- Two examples (L’Ecuyer, 1998)
- Nonlinear $f=f_{k}$ via quadratic recursion:
- Nonlinear f_{k} via inversive generator:

$$
\begin{aligned}
& J_{k}=\left(a J_{k-1}^{2}+b J_{k-1}+c\right) \bmod m \\
& U_{k}=J_{k} / M
\end{aligned}
$$

$$
\begin{aligned}
& J_{k}=(a k+c)^{m-2} \bmod m \\
& U_{k}=J_{k} / M
\end{aligned}
$$

Combining Generators

- Used to increase period length and improve statistical properties
- Shuffling: uses second generator to choose random order for numbers produced by final generator
- Bit mixing: combines numbers in two sequences using some logical or arithmetic operation (addition and subtraction are preferred)

Random Number Generators Used in Common Software Packages

- Important to understand types of generators used in statistical software packages and their limitations
- MATLAB:
- Versions earlier than 5: LCG with $a=75=16807, c=0, m=2^{31}-$ 1
- Versions 5 to 7.3: lagged Fibonacci generator combined with shift register random integer generator with period $\sim 2^{1492}$ ("ziggurat algorithm")
- Versions 7.4 and later: "Mersenne twister" (sophisticated linear algorithm with huge period $\sim 2^{19937}$)
- EXCEL: $U_{k}=$ fractional part ($9821 U_{k-1}+0.211327$); period $\sim 2^{23}$
- SAS (vers. 6): LCG with period $2^{31}-1$

Inverse-Transform Method for Generating Non-

 $U(0,1)$ Random Numbers- Let $F(x)$ be distribution function of X
- Define inverse function of F by

$$
F^{-1}(y)=\inf \{x: F(x) \geq y\}, 0 \leq y \leq 1 .
$$

- Generate X by

$$
X=F^{-1}(U)
$$

- Example: exponential distribution

$$
\begin{aligned}
& F(x)=1-e^{-\lambda x} \\
& X=F^{-1}(U)=-\frac{1}{\lambda} \log (1-U)
\end{aligned}
$$

Accept-Reject Method

- Let $p_{X}(x)$ be density function of X
- Find function $\varphi(x)$ that majorizes $p_{x}(x)$
- Have $\varphi(x)=C q(x), C \geq 1, q$ is density function that is "easy" to generate outcomes from
- Accept-reject method generates X by following steps:

Generate U from $U(0,1) \quad\left({ }^{*}\right)$
Generate Y from $q(y)$, independent of U
If then set $X=Y$. Otherwise, go back to (*)

- Related tō Mangkv' chain Monte Carlo (MCMC) (see Exercise 16.4 of ISSO)
- Example to follow next two slides $\left(p_{\chi}(x)=\right.$ beta density)....

$$
p_{x}(x)=\left\{\begin{array}{lll}
60 x^{3}(1-x)^{2} & \text { if } 0 \leq x \leq 1 & Y \sim q(y)=U(0,1) \\
0 & \text { otherwise } & U \leq \frac{60 Y^{3}(1-Y)^{2}}{2.0736}
\end{array}\right.
$$

Note: This example adapted from
Law (2007, p.438)

D-17

$$
U \sim U(0,1): 0.9501,0.2311,0.6068,0.4860,0.8913, \cdots
$$

$$
Y \sim q(y)=U(0,1): 0.7621,0.4565,0.0185,0.8214,0.4447, \cdots
$$

$$
\frac{p_{X}(Y)}{C q(Y)}: 0.7249,0.8131,0.00018, \cdots
$$

Accept/reject: Is U value \leq above ratio?

$$
x \sim p_{X}(x): \begin{gathered}
0.7621,0.4565,0.0185, \cdots \\
\text { reject accept reject }
\end{gathered}
$$

Accepted values represent realization of random numbers from $p_{X}(x)$

References for Further Study

- Law, A. M. (2007), Simulation Modeling and Analysis (4th ed.), McGraw-Hill, New York, Chap. 8.
- L'Ecuyer, P. (1998), "Random Number Generation," in Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice (J. Banks, ed.), Wiley, New York, Chap. 4.
- L'Ecuyer, P. (2004), "Random Number Generation," in Handbook of Computational Statistics (J. E. Gentle, W. Härdle, and Y. Mori, eds.), Springer, Chap. II. 2 (pp. 35-70).
- Moler, C. (2004), Numerical Computing with MATLAB (Chap. 9: Random Numbers), SIAM, Philadelphia (online at www.mathworks.com/moler/chapters.html).
- Neiderreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia.

