
 

 RANDOM NUMBER GENERATION 



Uniform Random Number Generators 

• Want sequence of independent, identically distributed uniform 
(U(0,1)) random variables 

– U(0,1) random numbers of direct interest in some applications 

– More commonly, U(0,1) numbers transformed to random numbers 
having other distributions (e.g., in Monte Carlo simulation) 

• Computer-based random number generators (RNGs) produce 
deterministic and periodic sequence of numbers 

– Pseudo random numbers 

• Want pseudo random numbers that “look” random 

– Should be able to pass all relevant statistical tests for randomness 
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Overall Framework for Generating Random 
Numbers 

• State at step k given transition function fk: 

 

• Output function, g, produces pseudo random numbers as 

 

• Output sequence of RNG is {Jk, k  1} 

• Period of an RNG is number of iterations before RNG 
output (Uk) repeats itself 
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Criteria for Good Random Number Generators 
• Long period 
• Strong theoretical foundation 
• Able to pass empirical statistical tests for independence and 

distribution (next slide) 
• Speed/efficiency 
• Portability: can be implemented easily using different languages and 

computers 
• Repeatability: should be able to generate same sequence from same 

seed 
• Be cryptographically strong to external observer: unable to predict next 

value from past values  
• Good distribution of points throughout domain (low discrepancy) (also 

related to quasi-random sequences, not covered here) 
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Criteria for Good Random Number 
Generators (cont’d): Statistical Tests 

• Ideal aim is that no statistical test can distinguish RNG output from 
i.i.d. U(0,1) sequence 
– Not possible in practice due to limits of testing and limits of finite-period 

generators 

• More realistic goal is passing only key (relevant) tests 
• Null hypothesis: sequence of random numbers is realization of i.i.d. 

U(0,1) stochastic process 
– Almost limitless number of possible tests of this hypothesis  

• Failing to reject null hypothesis improves confidence in generator but 
does not guarantee random numbers will be appropriate for all 
applications 

• Bad RNGs fail simple tests; good RNGs fail only complicated and/or 
obscure tests 
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Types of Random Number Generators 

• Linear: commonly used 

• Combined: can increase period and improve statistical 
properties 

• Nonlinear: structure is less regular than linear generators 
but more difficult to implement and analyze 

• Physical processes (e.g., timing in atomic decay, internal 
system noise, etc.) 

– Not as widely used as computer-based generators due to 
costliness of implementation, lack of speed, and inability to 
reproduce same sequence 
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Linear Congruential Generators 

• Linear congruential generators (LCG) produce U(0,1) numbers via 

 

 

 
 where a, c, and m are user-specified constants 

• LCG appears to be most widely used and studied random number generator 

• Values a, c, and m should be carefully chosen: 

 

 

 (LCG output may be modified to avoid 0 values for Uk) 

D-7 

  



1 mod

,

k k

k
k

J aJ c m

J
U

m

 

   

   0

0 , 0

0 , 0,1, , 1k

a m c m

J m J m



Linear Congruential Generators 

• Some famous values for a and m (assuming c = 0) 

– a = 23, m = 108 + 1  (first LCG; original 1951 implementation) 

– a = 65539, m = 231 –1 (RANDU generator of 1960s; poor 
because of correlated output) 

– a = 16807, m = 231
–1 (has been discussed as minimum 

standard for RNGs; used in Matlab version 4) 

 
Lehmer, D. H. (1951), “Mathematical Methods in Large-Scale 

Computing Units,” Annals of the Computation Laboratory of Harvard 
University, no. 26, pp. 141–146.  
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Number of Samples 

m = 9, a = 4, c = 1 

m = 27, a = 26, c = 5 

m = 482, a = 13, c = 14 

m = 231 – 1, a = 4, c = 1 

Example of “Minimal” Statistical Test for LCG: 
Is Sample Mean Close to 0.5? 



Fibonacci Generators 

• These are generators where current value is 
sum (or difference, or XOR) of two preceding 
elements 

• Lagged Fibonacci generators use two numbers 
earlier in sequence 
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Multiple Recursive Generators 

• Multiple recursive generators (MRGs) are defined by 

 

 

    

 where the ai belong to {0,1,…,m – 1}  
• Maximal period is m

r – 1 for prime m and properly chosen 
ai 

• For r = 1, MRG reduces to LCG 
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Nonlinear Generators 
• Nonlinearity sometimes used to enhance performance of RNGs  

– Nonlinearity may appear in transition function fn and/or in output 
function g (see earlier slide “Overall Framework for Generating 
Random Numbers”) 

– Have some advantage in reducing lattice structure (Exercise D.2) and in 
reducing discrepancy 

• Two examples (L’Ecuyer, 1998) 
– Nonlinear f = fk via quadratic recursion: 

 

 

– Nonlinear fk via inversive generator: 
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Combining Generators 

• Used to increase period length and improve statistical 
properties 

• Shuffling: uses second generator to choose random order 
for numbers produced by final generator 

• Bit mixing: combines numbers in two sequences using 
some logical or arithmetic operation (addition and 
subtraction are preferred) 
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Random Number Generators Used in 
Common Software Packages 

• Important to understand types of generators used in statistical 
software packages and their limitations 

• MATLAB: 
– Versions earlier than 5: LCG with a = 75 = 16807, c = 0, m = 231–
1  

– Versions 5 to 7.3: lagged Fibonacci generator combined with 
shift register random integer generator with period 21492 

(“ziggurat algorithm”)               

– Versions 7.4 and later: “Mersenne twister” (sophisticated linear 
algorithm with huge period 219937 )  

• EXCEL: Uk = fractional part (9821Uk –1 + 0.211327); period 223  
• SAS (vers. 6): LCG with period 231–1 
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Inverse-Transform Method for Generating Non-
U(0,1) Random Numbers 

• Let F(x) be distribution function of X 

• Define inverse function of F by 

 

 
• Generate X by  

 

• Example: exponential distribution 
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AcceptReject Method 
• Let pX(x) be density function of X 

• Find function (x) that majorizes pX(x)  
– Have (x) = Cq(x), C  1, q is density function that is “easy” to generate 

outcomes from 

• Acceptreject method generates X by following steps: 

 Generate U from U(0,1)   (*) 
 Generate Y from q(y), independent of U 

 If                     then set X = Y. Otherwise, go back to (*) 
 

• Probability of acceptance (efficiency) = 1/C 
• Related to Markov chain Monte Carlo (MCMC) (see Exercise 16.4 of 

ISSO) 
• Example to follow next two slides (pX(x) = beta density)…. 
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U ~ U(0,1): 0.9501, 0.2311, 0.6068, 0.4860, 0.8913,   

Y ~ q(y)  U(0,1): 0.7621, 0.4565, 0.0185, 0.8214, 0.4447,   

( )
:

( )
Xp Y

Cq Y
0.7249, 0.8131, 0.00018,  

X ~ pX(x): 0.7621, 0.4565, 0.0185, 

reject accept reject 

Accept/reject: Is U value  above ratio? 

Accepted values represent realization of random 

numbers from pX(x) 



References for Further Study 

• Law, A. M. (2007), Simulation Modeling and Analysis (4th ed.), McGraw-Hill, 
New York, Chap. 8. 

• L’Ecuyer, P. (1998), “Random Number Generation,” in Handbook of 
Simulation: Principles, Methodology, Advances, Applications, and Practice 
(J. Banks, ed.), Wiley, New York, Chap. 4.  

• L'Ecuyer, P. (2004), “Random Number Generation,” in Handbook of 
Computational Statistics (J. E. Gentle, W. Härdle, and Y. Mori, eds.), 
Springer, Chap. II.2 (pp. 3570). 

• Moler, C. (2004), Numerical Computing with MATLAB (Chap. 9: Random 
Numbers), SIAM, Philadelphia (online at 
www.mathworks.com/moler/chapters.html). 

• Neiderreiter, H. (1992), Random Number Generation and Quasi-Monte 
Carlo Methods, SIAM, Philadelphia. 

 

D-19 


